Unit 2: Kinematics

Problem

A particle starts from origin at $t=0 \mathrm{~s}$ with a velocity of $\mathbf{1 0} \mathbf{j} \mathbf{~ m ~ s} \mathbf{s}^{\mathbf{- 1}}$ and moves in the X-Y plane with a constant acceleration of $8 \hat{\imath}+2 \hat{\jmath} \boldsymbol{m ~ s}^{-2}$.
a. At what time is the x-coordinate of the particle 16 m ? What is the y-coordinate of the particle at that time?
b. What is the speed of the particle at that time?

Solution:

Initial velocity of the particle, $\mathrm{u}=10 \hat{\jmath} \mathrm{~m} \mathrm{~s}^{-1}$

Particle moving in $X-Y$ plane with constant acceleration, $\mathrm{a}=8 \hat{\imath}+2 \hat{\jmath} \mathrm{~m} \mathrm{~s}^{-2}$
If \vec{r} is the position vector of the particle at time t, then,

$$
\begin{gathered}
\vec{r}=\vec{u} t+\frac{1}{2} \vec{a} t^{2} \\
=10 \hat{\jmath}+\frac{1}{2}(8 \hat{\imath}+2 \hat{\jmath}) t^{2}
\end{gathered}
$$

$\vec{r}=4 t^{2} \hat{\imath}+\left(10 t+t^{2}\right) \hat{\jmath}$

If (x, y) are the coordinates of the particle at time t, then,

$$
\begin{equation*}
\vec{r}=x \hat{\imath}+y \hat{\jmath} \tag{2}
\end{equation*}
$$

From equation (1) and (2), we have

$$
x \hat{\imath}+y \hat{\jmath}=4 t^{2} \hat{\imath}+\left(10 t+t^{2}\right) \hat{\jmath}
$$

Now comparing the coefficient of $\hat{\imath}$ and $\hat{\jmath}$, we have,

$$
\mathrm{x}=4 t^{2}
$$

$$
\mathrm{y}=10 \mathrm{t}+t^{2}
$$

when $x=16 \mathrm{~m}$, the above equation becomes
$16=4 t^{2}$
$t^{2}=4$
$\mathrm{t}=2 \mathrm{~s}$
when $t=2 s$, then $y=10 \times 2+2^{2}$

$$
=20+4
$$

$=24 \mathrm{~m}$
b. If \vec{v} is the velocity of particle at time t, the,

$$
\begin{aligned}
\vec{v} & =\vec{u}+\vec{a} t \\
& =10 \hat{\jmath}+(8 \hat{\imath}+2 \hat{\jmath}) t \\
& =8 t \hat{\imath}+(10+2 t) \hat{\jmath}
\end{aligned}
$$

At $\mathrm{t}=2 \mathrm{~s}$,

$$
\begin{aligned}
\vec{v}=8 & \times 2 \hat{\imath}+(10+2 \times 2) \hat{\jmath} \\
& =16 \hat{\imath}+14 \hat{\jmath} \\
v & =\sqrt{16^{2}+14^{2}} \\
& =\sqrt{256+196} \\
& =\sqrt{452} \\
& =21.26 \mathrm{~m} \mathrm{~s}^{-1}
\end{aligned}
$$

A
 CIET
 NCERT
 PRESENTATION

