Unit 2: Kinematics

Problem

CIET, NCERT

A particle starts from origin at t = 0 s with a velocity of 10 \hat{j} m s^{-1} and moves in the X-Y plane with a constant acceleration of $8\hat{i} + 2\hat{j} m s^{-2}$.

a. At what time is the x-coordinate of the particle 16 m? What is the y-coordinate of the particle at that time?

b. What is the speed of the particle at that time?

Solution:

Initial velocity of the particle, $u = 10 \hat{j} m s^{-1}$

Particle moving in X-Y plane with constant acceleration, a = $8\hat{i} + 2\hat{j} m s^{-2}$

If \vec{r} is the position vector of the particle at time t, then,

$$\vec{r} = \vec{u}t + \frac{1}{2}\vec{a}t^{2}$$
$$= 10\,\hat{j} + \frac{1}{2}(8\hat{\imath} + 2\hat{j})t^{2}$$

$$\vec{r} = 4 t^2 \hat{\imath} + (10t + t^2)\hat{\jmath}$$
 (1)

If (x,y) are the coordinates of the particle at time t, then,

 $\vec{r} = x\hat{\imath} + y\hat{\jmath}$ (2) From equation (1) and (2), we have $x\hat{\imath} + y\hat{\jmath} = 4 t^2\hat{\imath} + (10t + t^2)\hat{\jmath}$ Now comparing the coefficient of $\hat{\imath}$ and $\hat{\jmath}$, we have, x =4 t^2 y = 10 t + t^2 when x= 16 m, the above equation becomes $16 = 4 t^2$

$$t^{2} = 4$$

 $t = 2s$
when t = 2s, then y = $10 \times 2 + 2^{2}$
 $= 20 + 4$
 $= 24 m$

b. If \vec{v} is the velocity of particle at time t, the, $\vec{v} = \vec{u} + \vec{a}t$ $=10 \hat{j} + (8\hat{\iota} + 2\hat{j})t$ $= 8 t \hat{i} + (10 + 2t)\hat{j}$ At t = 2s, $\vec{v} = 8 \times 2 \hat{i} + (10 + 2 \times 2)\hat{j}$ $= 16 \hat{i} + 14 \hat{j}$ $v = \sqrt{16^2 + 14^2}$ $=\sqrt{256+196}$ $=\sqrt{452}$ $=21.26 \text{ m s}^{-1}$

A CIET NCERT PRESENTATION

CIET, NCERT